
Techniques And

Technologies in Variability

Management:
From Conditional Compilation, Frame Technology, Framed Aspects,

Lightweight Method Towards In-Code Complexity Assessable Constructs

Feature

Configuration

Source: Krzysztof Czarnecki and Michał Antkiewicz. ‘‘Map-ping

Features to Models: A Template Approach Basedon

Superimposed Variants’’. en. In: Generative Pro-gramming and

Component Engineering. Ed. by DavidHutchison et al. Vol.

3676. Series Title: Lecture Notesin Computer Science. Berlin,

Heidelberg: SpringerBerlin Heidelberg, 2005, pp. 422–437.

Software product

lines

NO ASPECTS

 IN PRODUCTS

Commonality

 vs.

Variability

Puzzle app.

Desing app.
vs.

Design 3D

Puzzle

To Play

Combining both of

their

platforms?

Software Product Line to Produce

Stateful Canvas Software Products

-users wants all features to

make final design as good as possibleFOR REUSE

-majority of changes

are necessary for the new

type of product

-platform fits best for developing

new algorithms

and for its interactions

-often realized in automobile industry

Aspect-Oriented Product

Lines: Approach

Source: Alves, V., Jr, P.M., Borba, P.: An Incremental Aspect-Oriented

ProductLine Method for J2ME Game Development p. 3 (Jan 2004)

Superimposed variants

Source: Krzysztof Czarnecki and Michał

Antkiewicz. ‘‘Map-ping Features to Models: A

Template Approach Basedon Superimposed

Variants’’. en. In: Generative Pro-gramming

and Component Engineering. Ed. by

DavidHutchison et al. Vol. 3676. Series Title:

Lecture Notesin Computer Science. Berlin,

Heidelberg: SpringerBerlin Heidelberg, 2005,

pp. 422–437.

Similar to product

derivation

Specifies instance

of model family

Based on feature model
Automation

based on this

configuration

Instantiation =

 Model To Model

 Transformation
-input and output in target notation

Variability Model

annotated with

Presence

Conditions

Meta

Expressions

-defined in terms of feature and

feature attributes from feature model

-evaluated in respect to feature

configuration

-attached to model instance to

state if element is present

(condition is evaluated as false)

or should be removed (false)

Model template

elements

-used to compute

attributes of model

elements
-element name, return

type of operation,...

Model

Feature

Model

Model

Template

-hierarchic

organization of

features with

constraints on

their possible

configuration

-union of model

elements to make

valid template

instance

Source: Krzysztof Czarnecki and Michał

Antkiewicz. ‘‘Map-ping Features to Models: A

Template Approach Basedon Superimposed

Variants’’. en. In: Generative Pro-gramming

and Component Engineering. Ed. by

DavidHutchison et al. Vol. 3676. Series Title:

Lecture Notesin Computer Science. Berlin,

Heidelberg: SpringerBerlin Heidelberg, 2005,

pp. 422–437.Boolean formulas correspond to the features in feature model

Superimposed Variants: Example
commonality

variability

Top-level activity of store-front

instantiation (also

derivation in SPL context)

SendWishList not included

– as false in configuration

Container (whole model)

is managed with its own

presence conditions. All

elements are removed

along with removed

container.
Applicable on XPATH if evaluates

on Boolean expression.

Meta-Expression in

Superimposed Variants

Input pin

of action

Source: Krzysztof Czarnecki and

Michał Antkiewicz. ‘‘Map-ping

Features to Models: A Template

Approach Basedon Superimposed

Variants’’. en. In: Generative Pro-

gramming and Component

Engineering. Ed. by

DavidHutchison et al. Vol. 3676.

Series Title: Lecture Notesin

Computer Science. Berlin,

Heidelberg: SpringerBerlin

Heidelberg, 2005, pp. 422–437.

Class Diagram

Source: Krzysztof Czarnecki and Michał Antkiewicz. ‘‘Map-ping Features to

Models: A Template Approach Basedon Superimposed Variants’’. en. In:

Generative Pro-gramming and Component Engineering. Ed. by

DavidHutchison et al. Vol. 3676. Series Title: Lecture Notesin Computer

Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 422–437.

Classification of

 product into

 multiple

categories

Containment hierarchy

for Category

Superimposed Variants:

 Approach Steps

Meta-Expression in

Superimposed Variants

Conditional Compilation

Figueiredo, E., Cacho, N., Sant’Anna,

C., Monteiro, M., Kulesza: Evolving software product lines with aspects: An empirical study on

design stability. In: Proceedings of 30th international conference on Software

engineering, ICSE’08. ACM (2008)

copyMedia

smsFeature ||

 captureMedia

smsFeature ||

 captureMedia

Config.

 Expressions:

Config. Expressions:

Config.

Expressions:

Variability

Block 1

Variability Block 2

Variability

Block 3

Wrappers in

pure::variants

from: pure::systems: PLE & code—managing

variability in source code. https: //youtu.be/RlUYjWhJFkM (2020)

Configuration expression

in pure::variants

from: pure::systems: PLE & code—managing

variability in source code. https: //youtu.be/RlUYjWhJFkM (2020)

Expression:

Whole variability construct:

 From 1970s

 Language independent textual preprocessor

 To create generalized components

 Easily adapted or modified to different reuse contexts

 Based on code templates and specification from developers

Framed Technology -

Overview

Typical Commands/Tags:
<set> - sets a variable

<select> - selects an option

<adapt> - refines a module with new functionality

<while> - creates a loop around repeating code

Framed

Technology –

variability

handled code

Single System

Code – OOP

implementation

pertaining to

the hyperlinkEvent

 requires to

update code

in both frames

Source: Loughran, N., Rashid, A., Zhang, W.,

Jarzabek, S.: Supporting product line

evolution with framed aspects p. 5 (2004)

 Implementation of cache feature using

object-oriented programming

Framed

Technology - OOP

Source: Loughran, N., Rashid, A., Zhang, W.,

Jarzabek, S.: Supporting product line

evolution with framed aspects p. 5 (2004)

Framed
Technology - AOP
 Implementation of cache feature using

aspect-oriented programming

UNAVAILABLE

PARAMETERIZATION

SUPPORT WITH PURE

ASPECT-ORIENTED

PROGRAMMING

Abstract aspects

 +

Concreate aspects

(specifying concrete

 variants)

-can lead to

inheritance

annomalies

Source: Loughran, N., Rashid, A.,

Zhang, W., Jarzabek, S.: Supporting

product line

evolution with framed aspects p. 5

(2004)

Framed Technology With

Aspects
-benefitting from the combination of Frame technology and aspects

Aspects Frame Technology
-to encapsulate and modularize

tangled features

-providing parameterization and reconfiguration support

for feature aspects

-processed by Lancaster Frame Processor (LFP)

-takes only selected frame constructs

-forces programmer to use aspect-oriented techniques

RESTRICTIONS:

-creation of metavariables and options bound to specification from the developer

-to support effective parameterization

 and reconfiguration

-reduces clutter of template code

[which is essentially a cut down

 version of the XVCL frame processor]

Source: Loughran, N., Rashid, A., Zhang, W., Jarzabek, S.: Supporting product line

evolution with framed aspects p. 5 (2004)

Comparing

Frames

and AOP

Framed Aspects

A) CODE AFFECTED

WITH FRAMED TAGS

B) MERGE ALTERNATIVE

AND OPTIONAL

FEATURES IN TERMS OF

CONSTRAINTS

Source: Loughran, N., Rashid, A., Zhang, W.,

Jarzabek, S.: Supporting product line

evolution with framed aspects p. 5 (2004)

-aspects benefitting from generalization

 and parameterization

-offering the best from frames and

aspects such as

 -flexibility

 -reusability

 -evolvability

-improving the integration

of features in SPL

(crosscutting

 multiple modules

 in OO and frames

 without aspects)

-LOCALIZATION OF

CROSSCUTTING

CONCERNS
-improving system

 comprehensibility

-minimising design

 erosion of architectures

Configurable

parameters

Different

Strategies

(of scheme)

-predefines data

structure within

cache and the

way how is deleted
-intertype declaration

To frame

properties

(Scheme,

ContentType)

PARAMETERIZED ADAPT:

+ incorporation into

aspect.

Different

Strategies

(of content

type)
-to do not constrain

Aspects on J2SE

document

Assigned values from

 template parameters

Defining type of object

A) CODE

AFFECTED

WITH

FRAMED

TAGS

Framed Aspects
B) MERGE ALTERNATIVE AND OPTIONAL FEATURES

 IN TERMS OF CONSTRAINTS

-more control over different modules

-for more complex scenarios

-removal more of invasive frame code

REUSABLE

COMPONENT
FRAME ASPECT

mapping

-developed methodology to use feature

 diagram based on FODA:

-adapt tags from the framed aspect

code to the composition rules)

-the moving of option

Source: Loughran, N., Rashid, A., Zhang, W.,

Jarzabek, S.: Supporting product line

evolution with framed aspects p. 5 (2004)

A) Framed

 Aspect Code

B) Composition

Rules

C) Specification

Normal

aspect code

Parameterised

aspect code

(Framed Aspects)

Maps out possible legal

aspect feature:

Framed

Aspects

Composition

compositions

combinations

constraints

control flows

How these

bound

together

Developer’s customization

specifications

-taking incomplete template

specification + filling options and

variables that are wished to set

Made of 3

distinct modules:

Process

Parame-

terized

Variants

Loughran, N., Rashid, A.:

Framed aspects:

Supporting variability and

configurability for AOP. In:

Proceedings of 8th

International Conference

onSoftware Reuse, ICSR

2004. LCNS 3107,

Springer, Madrid, Spain

(2004)

 MAX_CACHE_SIZE: Sets the maximum size of records the cache will hold.

 PERC_TO_DEL: The amount of records to delete when the deletion

mechanism is invoked.

 CONN_CLASS: The class which contains the methods for sending the query to

the database and also sending the results back to the client.

 SEND_QUERY: The method which sends the query to the database.

 REPLY_CLIENT: The method which sends the result back to the client.

 DOC_TYPE: The type of information that is being stored in the cache (e.g.

String, Document, CachedResultSet etc.).

-used in any textual representation to make substantiation of type or object,

 a method, joinpoint, or pointcut designator

AspectJ Cache Code

Sets the size of the cache and percentage

to be deleted as set by the parameters in

the specification.

Creates a pointcut for

intercepting the call to the

method which executes SQL

queries on the database.

Creates a pointcut for

intercepting the results sent

back to the client.

CacheDS is a data structure for

storing the cache results.

Loughran, N., Rashid, A.: Framed aspects:

Supporting variability and configurability for

AOP. In: Proceedings of 8th International

Conference onSoftware Reuse, ICSR 2004.

LCNS 3107, Springer, Madrid, Spain (2004)

Delineating Frame Boundaries
Careful consideration of:

VARIANTS SCOPE FOR WHICH ASPECT IS INTENDED

 1) Creating feature diagram using FODA – discovering variants

Feature Approach – natural design method for use with framed aspects

Characteristics of feature aspect:

 Dependencies,

 Options

 Alternative characteristics

 2) Deducing aspects frames by delineating the boundaries between the

different options and alternatives in the model

Duplicated code

from Y and Z handled in new separate layer J

Duplicated

code

common to

Y and Z

 (such as an

algorithm)
Alternative

variantsFrame

boundaries

 Enhancing modularity and reusability

 Allowing component to be framed separately from the main codebase

REUSABLE IN OTHER CONTEXTS

 Breaking down large aspect modules

 Hiding away less important information from the main concern

Delineating Frame Boundaries

 Utilization of aspect-oriented programming to:

 Integrating concern in a non-invasive manner

 Used to make coarser grained functionality

 Used when particular concerns crosscuts multiple modules

 Utilization of frame commands to:

 fine grained variability

 parameterization

 Constraints

Frame

technology Aspect Oriented Programming

Any programming

 construct can be parameterized

Loughran, N., Rashid,

A.: Framed aspects:

Supporting variability

and con-figurability

for AOP.

In: Proceedings of 8th

International

Conference

onSoftware Reuse,

ICSR 2004.

LCNS 3107, Springer,

Madrid, Spain (2004)

Delineating Frame Boundaries

Reusability of frame with feature J

Loughran, N., Rashid, A.: Framed aspects:

Supporting variability and configurability for

AOP. In: Proceedings of 8th International

Conference onSoftware Reuse, ICSR 2004. LCNS

3107, Springer, Madrid, Spain (2004)

Delineating

Frame

Boundaries

Writable Frame
-demonstrating strength of framed-aspects over AOP alone and frame technology:

PARAMETERIZATION AND CROSSCUTTING REFINEMENTS ARE ENCAPSULATED WITHIN SINGLE FRAME:

Loughran, N., Rashid, A.: Framed aspects: Supporting variability and configurability for AOP. In: Proceedings of

8th International Conference onSoftware Reuse, ICSR 2004. LCNS 3107, Springer, Madrid, Spain (2004)

Pointcut used to trap new instances of

CacheDS (data structure for holding the

result data to be cached).

Pointcut to capture ResultSet from

currently executing query.

Advice which adds tables contained

within the executing query by a

particular client to the CacheDS

data structure

Advice which captures the ResultSet

to obtain the ResultSetMetaData

and, therefore, the tables used in

the resulting query.

Loughran, N., Rashid,

A.: Framed aspects:

Supporting variability

and configurability

for AOP.

In: Proceedings of 8th

International

Conference on

Software Reuse,

ICSR 2004.

LCNS 3107, Springer,

Madrid, Spain (2004)

Introductions (intertype

declaration) into the CacheDS

data structure which

 - adds new fields:

 -boolean isValid

 -Vector tables

 and

- adds new methods:

 -void setTables(Vector v)

 -boolean isValid()

 -void containsTable(String s)

 -Vector getTables()

Introductions

(intertype

declaration) into

the current

CONN_CLASS to

store tables for the

current executing

query.

Class provided as parameter

Class provided

as parameter

Loughran, N., Rashid, A.: Framed aspects: Supporting variability and con-figurability for AOP. In: Proceedings of

8th International Conference onSoftware Reuse, ICSR 2004. LCNS 3107, Springer, Madrid, Spain (2004)

Specification Rules
-separated from the main aspect code

-adaptation of framed aspects with required functionality

FINALLY, APPLYING

COMPOSITION RULES

1. The database cache option is selected for

CACHE_TYPE, 1000 query resultsets can be

stored by setting MAX_CACHE_SIZE,

DELETION_SCHEME is set to the least

accessed option, and PERC_TO_DEL is set to

50%.

2. CONN_CLASS targets a class called

DBConnection, the methods for sending

queries (sendQuery) to the database and

sending the query results back to the client

(replyToClient) are bound to SEND_QUERY

and REPLY_CLIENT respectively, while the

type of data to be stored in the cache,

DOC_TYPE, is bound to String.

3. The WRITABLE option is selected and the

EVERYWRITE update scheme is chosen.

4. Specification is processed by the

composition rules defined for the cache

component to bind the components

together.

Composition Rules

 1. Constraining meta

variables to sets or

ranges of possible

values.

 2. Adapting mandatory

features as defined by

the specification.

 3. Adapting optional

features

if selected.

 4. Adaptation rules for

the database cache.

Loughran, N., Rashid,

A.: Framed aspects:

Supporting variability

and configurability

for AOP. In: Proceedings

of 8th International

Conference onSoftware

Reuse, ICSR 2004.

LCNS 3107, Springer,

Madrid, Spain (2004)

-separated from the main aspect code -creation of different rules

-reusing framed aspects in different contexts

Applied according to specification

Checking Constraints: Example

DATABASE_CACHE in [DATABASE_CACHE, WEB_CACHE]

Specification Composition Rules

Adapted

as mandatory

 (always)

Is constraint

Modeling Variability - Types
 A) Modeling variability using parameterization

 B) Modeling variability using information hiding

 C) Modeling variability using inheritance

 D) Modeling variability using variation points

Source: Diana L. Webber, Hassan Gomaa, Modeling variability in software

product lines with the variation point model,

Science of Computer Programming, Volume 53, Issue 3, 2004, Pages 305-331,

ISSN 0167-6423, https://doi.org/10.1016/j.scico.2003.04.004
A variation point

identifies one or more

locations at which the

variation will occur

VARIATION POINT

Source: I. Jacobson, M. Griss, P. Jonsson, Software Reuse-Architecture, Process and

Organization for Business Success, ACM Press, New York, NY, 1997

Modeling Variability

Using

Parameterization

The ability to vary a greeting for display.

The ability to

vary the

language of

choice for display.

The ability to vary the action if the card has expired

-with the Unified Modeling Language (UML) notation

Source: Diana L.

Webber, Hassan

Gomaa, Modeling

variability in software

product lines with the

variation point model,

Science of Computer

Programming, Volume

53, Issue 3, 2004,

Pages 305-331, ISSN

0167-6423

Modeling variability using

 information hiding
-several version of the same component with the similar interface

-hiding variability inside each version

of the component

VARIANTS → different versions of the

same component

-limited to changes inside components,

 not interfaces

-concerning component version only

-no need to develop new variants

Source: Diana L. Webber, Hassan Gomaa,

Modeling variability in software product lines

with the variation point model,

Science of Computer Programming, Volume 53,

Issue 3, 2004, Pages 305-331, ISSN 0167-6423

LIMITED TO SELECT FROM

THE SET OF CHOICES

Modeling Variability

Using Inheritance

Source: Diana L. Webber, Hassan Gomaa,

Modeling variability in software product lines

with the variation point model,

Science of Computer Programming, Volume 53,

Issue 3, 2004, Pages 305-331, ISSN 0167-6423

-variants do not have to adhere to the same interfaces
VARIANTS → specializations of other

 components

-subclass extends the interfaces or

superclass with provided new

methods and attributes

 + overriding methods

LIMITED TO SELECT FROM

THE SET OF CHOICES

-no need to develop new variants

Example: KobrA Approach

 from PULSE

Modeling Variability

Using Variation Points

 1) Requirements View

 2) Component Variation Point View

 3) Static Variation Point View

 4) Dynamic Variation Point View

Communicating reuse through following views on variation points:

Source: Diana L. Webber, Hassan

Gomaa, Modeling variability in

software product lines

with the variation point model,

Science of Computer Programming,

Volume 53, Issue 3, 2004, Pages 305-

331, ISSN 0167-6423

-core asset component consists of variation points

USED TO BUILD TARGET SYSTEM COMPONENTS FROM VARIANTS MADE OUT OF THESE VARIATION POINTS

-the most of flexibility: making unique variants and maintaining them

-requires additional resources to

develop the variants as part of core assets

-lack of reusability for reuser to create

his own variant

NEW VARIANT CORE ASSETS

-maintenance and management costs

HAS TO BE ADDED INTO

-less resources to develop core assets/common core

-reuser can create new variant not supplied with common core

CONSTPROS

Lightweight method for software

product line feature management

 Independent of the given programming language

 No assumption about the development process or management is made

 No need for specific DSL and other tools or plugins (but lacks traceability)

 Managed by developers on their own, inside code specifically by annotating variable parts

 Easy to comprehend and use

 Only 3 associated actions given directly by annotation type – should be enough (+ another analytic
versions and one recursive version can be perceived)

 Expressions are not only conditional rules but domain knowledge should be inserted

 Should be used in a native and modular way

 The semantics of rules and derivation mechanism can be directly modified by developers according
to their needs/observations

Lightweight nature

Configuration expressions

 Express hierarchy information

 Easy to process by other systems

 Known format

 Not restricted to given parser/given annotation

 Addition information (non-configurational) can
be included

 Possibilities of IDE formatting:

 Hide certain hierarchy levels

 Hide whole variability information

 Emphasize on certain:

 Information

 Variability relation

AND or OR JSON TREE

 (variable1 OR (Variable2 AND variable3)) AND variable4

1. If given variables in config are both true, then

AND above is true

2. If given variable variable1 is false in config then

OR is true, otherwise remaining branches should be true

3. If given variable variable4 is true in config and

whole OR is true, then parent AND is true

4. If whole is true, then we can copy annotated method

Hierarchic nature of

configuration expressions
 {

 “AND“: {

 “Statistics”: true,

 “Challenge”: false,

 “AND”: {

 “Computer”: true,

 “Row”: “RandomRow”,

 “Column”: “RandomColumn”

 }

 }

 }

Configuration related

to computer as player

Configuration

of the first later

Focus during their creation can be on:

 - hierarchy levels

 - feature groups

 - certain hierarchies

Applied annotations types

//@{} //#{} //%{}
For whole

class/aspect/interface

For class/aspect

method only
For import

statement only

//%{}

//#{}

//@{}

Copying of whole

file with class
Copying of

given method

Copying of

given import

Variables features can interfere
Setting names for players needs update when computer player is added

We can’t use //@ annotation,

because of many different variable features

Object oriented redesign

of Battleship game
 Hardcoded parts should be changed to support configurability

 Different lengths of board

 Support for adding player

 Concerns should be separated

 Setup of player should be part of player class

 Setup of computer should be part of computer class

 Static methods should be replaced by objects

Pattern Cuckoo’s egg

Created by default

Created if

condition is

met

Config to feature

model mapping

Configuration using JSON File

Design With Aspects as

Voluntary Functionality
 Aspect can be removed from execution – variable functionality

 Aspect can intercepts points in execution and helps to derive product

 Good to extend functionality in various ways

 Add voluntary features

 Choosing specific strategy from strategy options – from mandatory ones too

 Enhance necessary functionality on existing classes (includes classes of additional

features)

Applied annotations types

//@{} //#{} //%{}
For whole

class/aspect/interface
For class/aspect

method only

For import

statement only

//%{}

//#{}

//@{}

Copying of whole file with class Copying of given method Copying of given import

Difficulty configuration Prepare configuration (with

difficulty settings) before creating

player’s specific instance

1. PREPARATION

2. POINTCUTS

The same pointcuts

“Hook“ functions

(with other names)

APPLYING CONFIGURATION VALUES

Calling the method with the same name but other arguments,

to apply other aspect managing player’s instance (showed previously)

Statistics configuration

Statistics observation are gathered

if value of variable from config file is True

MOVES

HITS

MISS = MOVES - HITS

Statistics objects are stored in hash-map

Variable encapsulation

problem

To call function to manage computer guess,

which should not be publicly visible

In player instance chooser aspect:

The same problem

Derivator – Class Diagram

Evaluation

of

in-code

variability

Motivation: Studying the

complexity of in-code variability
Measure code complexity of …to handle variability

 Code constructs of variability management to handle variability

 TO FIND LESS COMPLEX CODE CONSTRUCTS

 TO EVALUATE INCODE EQUIVALENTS OF OUR LIGHTWEIGH METHOD
CONSTRUCTS

 TO DESIGN FILTERING OF VARIABILITY DEPENDENT CONTEXT

 TO JUSTIFY THE SUPPORT OF LESS COMPLEX VARIABILITY CONSTRUCTS

 Entire variability management

 TO MEASURE THE INFLUENCE OF CODE COMPLEXITY MEASURES

 Expressions used by variability management to mark variability

 TO OPTIMIZE THEM

 TO MAKE THEM MORE COMPREHENSIBLE WHILE PRESERVING FEATURE
MODELS IN CODE

Measuring in-code

complexity of puzzle

to play SPL
5 features

Wilcoxon pair test

- 0,05 significance level

- independent on

distribution

76 files, 84 classes

64 unique classes

Commonality

 vs.

Variability

Puzzle app.

Desing app.
vs.

Cases to evaluate in-code

complexity

Case 1: Variability is expressed using detachable decorators

Case 2: Variability is expressed using detachable decorators,
 but without variability configuration expressions

Case 3: Variability is expressed using wrappers

Case 4: Variability is not expressed at all

Case 5: Variability is expressed using detachable decorators, but
 additional unwanted dead code constructs are not
 included for illegal decorators

EXPRESSION_START50 = {"OR": { "zoomCoordinates": "true", "zoomValue": "true" }};
let zoomConfig = {"name": "Zoom", "path": "/puzzle/zoom",

"componentPathInModule": "zoom", "componentRef": ZoomManagementComponent};
ELSE50 = { "ELSE": "~~~~~~~~~~~~~~~~~~~~~~~~~" };
let zoomConfig = null;
EXPRESSION_END50 = { "EXPRESSION_END": "---------------------------" };

// @ts-ignore
@DecoratorTypesService.skipLineVariableDeclaration(

{"OR": { "zoomCoordinates": "true", "zoomValue": "true" }}, "[NOT=let zoomConfig = null;]")
let zoomConfig = {"name": "Zoom", "path": "/puzzle/zoom",

"componentPathInModule": "zoom", "componentRef": ZoomManagementComponent};

VS

Evaluation process

Hypothesis 1: Variability expressions extracted from annotations do not

 significantly change the complexities of most evaluated metrics.

How complex configuration expression are?

Configuration expressions

 Express hierarchy information

 Easy to process by other systems

 Known format

 Not restricted to given parser/given annotation

 Addition information (non-configurational) can
be included

 Possibilities of IDE formatting:

 Hide certain hierarchy levels

 Hide whole variability information

 Emphasize on certain:

 Information

 Variability relation

Hierarchic nature of

configuration expressions
 {

 “AND“: {

 “Statistics”: true,

 “Challenge”: false,

 “AND”: {

 “Computer”: true,

 “Row”: “RandomRow”,

 “Column”: “RandomColumn”

 }

 }

 }

Configuration related

to computer as player

Configuration

of the first later

Focus during their creation can be on:

 - hierarchy levels

 - feature groups

 - certain hierarchies

Analogies
The reason for using the Halstead measures in this study

is given by the increase in cognitive processing

demands due to the number of symbols.

The cyclomatic complexity was used to

analyze control flows due to their effects

on rule-guided conditional reasoning.

Schuster, S., Hawelka, S., Himmelstoss, N.A., Richlan, F., Hutzler, F.:

The neural correlates of word position and lexical predictability during

sentence reading: Evidence from fixation-related fMRI. Language,

Cognition and Neuroscience 35(5), 613–624 (Jun 2020)

Kulakova, E., Aichhorn, M., Schurz, M., Kronbichler, M., Perner, J.:

Processing counterfactual and hypothetical conditionals:

An fMRI investigation. NeuroImage 72, 265–271 (May 2013)

Annotations with variability

expressions should be

part of execution flow

No difference

in cyclomatic

complexity

…towards code comprehension

Hierarchically expressed configuration

expressions brings significant complexity.
Their code complexity can be used to optimize

them for example in automatic evolution process.

Hypothesis 2: Changing from wrappers to decorators significantly improves the

 complexity of most evaluated complexity metrics.

Are traditional wrappers more

 complex than decorators?

Decorators are significantly less complex than

wrappers even for a few variable features.

Conventional solutions based on wrappers such

as pure::variants or conditional compilation

can be enhanced to managing features in code.

Is complexity of variability management significant

for used code complexity measures?

…is less complex decorator-detachable version

insignificant to most of code-complexity measures?

Hypothesis 3: Removal of all variability constructs from Case 1 does not

 significantly change at least one of the evaluated complexity metrics.

The code complexity change after

removal of files with most of

(unconvertable decorators into)

wrappers

Narrowing test focused

on already supported

decorators in TypeScript

The variability management significantly

influences the code complexity

…the annotated code of fragments of variable features

 should be filtered according to

particular manipulations with code to decrease it

Is dead code introduced with use of

illegal decorators in TypeScript significant for

 used code complexity measures?
…should some of illegal decorators by supported in future

version for variability management?

Hypothesis 4: Unwanted dead code constructs significantly change complexity

 measured by most evaluated complexity metrics.

The support of function and import decorators is
necessary to reduce dead code with borderline
but still significant impact on code complexity.

Future work
 Optimizing configuration expressions on fractals where variability is modeled

and managed in large (many features)

 To suit interacting features

 To suit features on the same layer

 To suit features on a particular hierarchy tree

 combinations of approaches above

 Introducing variability filtering according to features, concerns, and code

complexity

 Observing a variability-oriented cyclomatic number by introducing program

flow that directly contains variability conditions taken from configuration

expressions

 Evaluate other code complexity measures and observe their influence on user

cognitive processing and comprehension

Optimalization of configuration

expressions in large
…creating hierarchic structures and evaluating

 the comprehension of feature models in code

via automated software

 product line evolution focused

 on generating fractal shapes

Bibliography
 BEUCHE, Danilo a Mark DALGARNO, 2006. Software Product Line Engineering with Feature Models.

2006, s. 7.

 BOTTERWECK, Goetz, Kwanwoo LEE a Steffen THIEL, 2009. Automating Product Derivation in
Software Product Line Engineering. 2009, s. 6.

 KASTNER, Christian, Sven APEL a Don BATORY, 2007. A Case Study Implementing Features Using
AspectJ. V: 11th International Software Product Line Conference (SPLC 2007): 11th International
Software Product Line Conference (SPLC 2007) [online]. Kyoto, Japan: IEEE, s. 223–232 [cit.
30.9.2021]. ISBN 978-0-7695-2888-5. Dostupné na: doi:10.1109/SPLINE.2007.12

 LADDAD, Ramnivas, 2003. AspectJ in action: practical aspect-oriented programming. Greenwich, CT:
Manning. ISBN 978-1-930110-93-9.

 PELÁNEK, Radek, 2012. Programátorská cvičebnice. 1. vydání. Brno: Computer press. ISBN 978-80-
251-3751-2.

 VRANIC, Valentino a Roman TÁBORSKÝ, 2016. Features as transformations: A generative approach to
software development. Computer Science and Information Systems [online]. 2016, roč. 13, č. 3, s. 759–
778. ISSN 1820-0214, 2406-1018. Dostupné na: doi:10.2298/CSIS160128027V

 YOUNG, Trevor J a B MATH, 1999. Using AspectJ to Build a Software Product Line for Mobile
Devices. 1999, s. 73.

 Mohammad Abu-Matar and Hassan Gomaa. 2011. Variability Modeling for Service
Oriented Product Line Architectures. In 2011 15th International Software Product
Line Conference. IEEE, Munich, Germany, 110–119. https://doi.org/10.1109/
SPLC.2011.26

 Hwi Ahn and Sungwon Kang. 2011. Analysis of Software Product Line Architecture
Representation Mechanisms. In 2011 Ninth International Conference on Software
Engineering Research, Management and Applications. IEEE, Baltimore, MD, USA,
219–226. https://doi.org/10.1109/SERA.2011.22

 S.A. Ajila. 2005. Reusing Base-product Features to develop Product Line
Architecture. In IRI -2005 IEEE International Conference on Information Reuse and
Integration, Conf, 2005. IEEE, Las Vegas, NV, USA, 288–293.
https://doi.org/10.1109/ IRI-05.2005.1506488

 Samuel A Ajila and Patrick J Tierney. 2002. The FOOM Method – Modeling Software
Product Lines in Industrial Settings. (2002), 11.

 Vander Alves, Pedro Matos Jr, and Paulo Borba. 2004. An Incremental Aspect-
Oriented Product Line Method for J2ME Game Development. (2004), 3.

 Vander Alves, Pedro Matos, Leonardo Cole, Alexandre Vasconcelos, Paulo Borba,
and Geber Ramalho. 2007. Extracting and Evolving Code in Product Lines with
Aspect-Oriented Programming. In Transactions on Aspect-Oriented Software
Development IV, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,
Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu
Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe
Y. Vardi, Gerhard Weikum, Awais Rashid, and Mehmet Aksit (Eds.). Vol. 4640.
Springer Berlin Heidelberg, Berlin, Heidelberg, 117–142.
https://doi.org/10.1007/978-3-540-77042-8_5 Series Title: Lecture Notes in
Computer Science.

 Fazal-e Amin, Ahmad Kamil Mahmood, and Alan Oxley. 2010. A Review on Aspect
Oriented Implementation of Software Product Lines Components. Information
Technology Journal 9, 6 (Aug. 2010), 1262–1269. https://doi.org/10.3923/itj.2010.
1262.1269

 Michalis Anastasopoulos and Dirk Muthig. 2004. An Evaluation of Aspect-Oriented
Programming as a Product Line Implementation Technology. In Software Reuse:
Methods, Techniques, and Tools, Jan Bosch and Charles Krueger (Eds.). Vol. 3107.
Springer Berlin Heidelberg, Berlin, Heidelberg, 141–156.
https://doi.org/10.1007/978-3-540-27799-6_12 Series Title: Lecture Notes in
Computer Science

 Sven Apel, Thomas Leich, and Gunter Saake. 2006. Aspectual mixin layers: aspects
and features in concert. In Proceedings of the 28th international conference on
Software engineering. ACM, Shanghai China, 122–131. https://doi.org/10.1145/
1134285.1134304

 U. Aßmann. 2003. Invasive Software Composition. Springer-Verlag, Berlin,
Heidelberg

 M.A. Babar. 2004. Scenarios, Quality Attributes, and Patterns: Capturing and Using
their Synergistic Relationships for Product Line Architectures. In 11th Asia-Pacific
Software Engineering Conference. IEEE, Busan, Korea, 574–578. https:
//doi.org/10.1109/APSEC.2004.91

 Felix Bachmann and Len Bass. 2001. Managing Variability in Software
Architectures. (2001), 7.

 L. Balzerani, D. Di Ruscio, A. Pierantonio, and G. De Angelis. 2005. A product line
architecture for web applications. In Proceedings of the 2005 ACM symposium on
Applied computing - SAC ’05. ACM Press, Santa Fe, New Mexico, 1689.
https://doi.org/10.1145/1066677.1067059

https://doi.org/10.3923/itj.2010.%201262.1269
https://doi.org/10.3923/itj.2010.%201262.1269

 Gérald Barré. 2018. Aspect Oriented Programming in TypeScript.
https://www.meziantou.net/aspect-oriented-programmingin-typescript.htm

 Don Batory, Rich Cardone, and Yannis Smaragdakis. 2000. Object-Oriented
Frameworks and Product Lines. In Software Product Lines, Patrick Donohoe (Ed.).
Springer US, Boston, MA, 227–247. https://doi.org/10.1007/978-1-4615-4339-8_13

 Joachim Bayer, Oliver Flege, and Cristina Gacek. 2000. Creating Product Line
Architectures. In Software Architectures for Product Families, Gerhard Goos, Juris
Hartmanis, Jan van Leeuwen, and Frank van der Linden (Eds.). Vol. 1951. Springer
Berlin Heidelberg, Berlin, Heidelberg, 210–216. https://doi.org/10.1007/978-3-
540-44542-5_23 Series Title: Lecture Notes in Computer Science.

 Ivo Augusto Bertoncello, Marcelo Oliveira Dias, Patrick H. S. Brito, and Cecília M. F.
Rubira. 2008. Explicit exception handling variability in component-based product
line architectures. In Proceedings of the 4th international workshop on Exception
handling - WEH ’08. ACM Press, Atlanta, Georgia, 47–54.
https://doi.org/10.1145/1454268.1454275

 Vinicius Bischoff, Kleinner Farias, Lucian José Gonçales, and Jorge Luis Victória
Barbosa. 2019. Integration of feature models: A systematic mapping study.
Information and Software Technology 105 (Jan. 2019), 209–225.
https://doi.org/10. 1016/j.infsof.2018.08.016

 Lynne Blair and Jianxiong Pang. 2003. Aspect-Oriented Solutions to Feature
Interaction Concerns using AspectJ. (2003), 17.

 Jan Bosch. 2000. Design & Use of Software Architectures—Adopting and Evolving a
Product Line Approach.

https://doi.org/10.1145/1454268.1454275
https://doi.org/10.%201016/j.infsof.2018.08.016

 Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink, and Klaus Pohl.
2002. Variability Issues in Software Product Lines. In Software Product-Family Engineering,
Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Frank van der Linden (Eds.). Vol. 2290.
Springer Berlin Heidelberg, Berlin, Heidelberg, 13–21. https://doi.org/10.1007/3-540-47833-
7_3 Series Title: Lecture Notes in Computer Science

 Jonathan Cardoso. 2021. How To Use Decorators in TypeScript.
https://www.digitalocean.com/community/tutorials/howto-use-decorators-in-typescript

 João M.P. Cardoso, Tiago Carvalho, José G.F. Coutinho, Wayne Luk, Ricardo Nobre, Pedro
Diniz, and Zlatko Petrov. 2012. LARA: an aspect-oriented programming language for
embedded systems. In Proceedings of the 11th annual international conference on Aspect-
oriented Software Development - AOSD ’12. ACM Press, Potsdam, Germany, 179.
https://doi.org/10.1145/2162049.2162071

 Adrian Colyer, Awais Rashid, and Gordon Blair. 2004. On the Separation of Concerns in
Program Families. (2004), 11

 Tung M. Dao and Kyo C. Kang. 2010. Mapping Features to Reusable Components: A Problem
Frames-Based Approach. In Software Product Lines: Going Beyond, David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Jan Bosch, and Jaejoon Lee (Eds.). Vol. 6287.
Springer Berlin Heidelberg, Berlin, Heidelberg, 377–392. https://doi.org/10.1007/978-3-642-
15579-6_26 Series Title: Lecture Notes in Computer Science.

 Ebru Dincel, Nenad Medvidovic, and André van der Hoek. 2002. Measuring Product Line
Architectures. In Software Product-Family Engineering, Gerhard Goos, Juris Hartmanis, Jan
van Leeuwen, and Frank van der Linden (Eds.). Vol. 2290. Springer Berlin Heidelberg, Berlin,
Heidelberg, 346–352. https://doi.org/10.1007/3-540-47833-7_31 Series Title: Lecture Notes
in Computer Science.

 Chethana Kuloor Armin Eberlein. 2002. Requirements Engineering for Software Product Lines.
(2002), 12

https://doi.org/10.1007/3-540-
https://www.digitalocean.com/community/tutorials/howto-use-decorators-in-typescript

 Eun Sook Cho, Min Sun Kim, and Soo Dong Kim. 2001. Component metrics to
measure component quality. In Proceedings Eighth Asia-Pacific Software
Engineering Conference. IEEE Comput. Soc, Macao, China, 419–426.
https://doi.org/10.1109/ APSEC.2001.991509

 Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Monteiro, Uira Kulesza,
Alessandro Garcia, Sergio Soares, Fabiano Ferrari, Safoora Khan, Fernando Castor
Filho, and Francisco Dantas. 2008. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. (2008), 10.

 Robert E. Filman and Daniel P. Friedman. 2000. Aspect-Oriented Programming is
Quantification and Obliviousness. In Proceedings of the Workshop on Advanced
Separation of Concerns in Object-Oriented Systems, ACM Conference on
ObjectOriented Programming, Systems, Languages, and Applications, OOPSLA
2000. Minneapolis, Minnesota USA. RIACS Technical Report 01.12, 2001.

 Critina Gacek and Michalis Anastasopoules. 2001. Implementing product line
variabilities. In Proceedings of the 2001 symposium on Software reusability putting
software reuse in context - SSR ’01. ACM Press, Toronto, Ontario, Canada, 109–117.
https://doi.org/10.1145/375212.375269

 R.L. Glass and I. Vessey. 1998. Focusing on the application domain: everyone
agrees it’s vital, but who’s doing anything about it?. In Proceedings of the Thirty-
First Hawaii International Conference on System Sciences, Vol. 3. IEEE Comput.
Soc, Kohala Coast, HI, USA, 187–196. https://doi.org/10.1109/HICSS.1998.656141

 Sebastian Gunther and Thorsten Berger. 2008. Service-Oriented Product Lines:
Towards a Development Process and Feature Management Model for Web Services.
(2008), 6.

 Stefan Hanenberg, Christian Oberschulte, and Rainer Unland. 2003. Refactoring of
Aspect-Oriented Software. (2003), 18.

https://doi.org/10.1145/375212.375269

 Jan Hannemann and Gregor Kiczales. 2002. Design Pattern Implementation in
Java and AspectJ. (Nov. 2002), 13.

 Wenhao Huang, Chengwan He, and Zheng Li. 2015. A Comparison of
Implementations for Aspect-Oriented JavaScript:. Zhengzhou, China.
https://doi.org/10.2991/csic-15.2015.9

 Renien John Joseph. 2015. Single Page Application and Canvas Drawing.
International journal of Web & Semantic Technology 6, 1 (Jan. 2015), 29–37.
https://doi.org/10.5121/ijwest.2015.6103

 Critina Gacek and Michalis Anastasopoules. 2001. Implementing product line
variabilities. In Proceedings of the 2001 symposium on Software reusability
putting software reuse in context - SSR ’01. ACM Press, Toronto, Ontario,
Canada, 109–117. https://doi.org/10.1145/375212.375269

 K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
Carnegie-Mellon University Software Engineering Institute

 Christian Kastner, Sven Apel, and Don Batory. 2007. A Case Study
Implementing Features Using AspectJ. In 11th International Software Product
Line Conference (SPLC 2007). IEEE, Kyoto, Japan, 223–232.
https://doi.org/10.1109/SPLINE.2007.12

 Elizabeth A Kendall. 1999. Role Model Designs and Implementations with
Aspect-oriented Programming. (1999), 17

https://doi.org/10.5121/ijwest.2015.6103
https://doi.org/10.1145/375212.375269
https://doi.org/10.1109/SPLINE.2007.12

 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. 2001. An Overview of AspectJ. In ECOOP 2001 — Object-

Oriented Programming, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and

Jørgen Lindskov Knudsen (Eds.). Vol. 2072. Springer Berlin Heidelberg, Berlin,

Heidelberg, 327–354. https://doi.org/10. 1007/3-540-45337-7_18 Series Title:

Lecture Notes in Computer Science.

 Jan Kohut and Valentino Vranic. 2010. Guidelines for using aspects in product

lines. In 2010 IEEE 8th International Symposium on Applied Machine

Intelligence and Informatics (SAMI). IEEE, Herlany, 183–188.

https://doi.org/10.1109/SAMI.2010. 5423741

	Snímka 1: Techniques And Technologies in Variability Management:
	Snímka 2: Feature Configuration
	Snímka 3
	Snímka 4
	Snímka 5: Design 3D
	Snímka 6
	Snímka 7: Combining both of their platforms?
	Snímka 8: Aspect-Oriented Product Lines: Approach
	Snímka 9: Superimposed variants
	Snímka 10: Variability Model
	Snímka 11: Superimposed Variants: Example
	Snímka 12: Meta-Expression in Superimposed Variants
	Snímka 13: Class Diagram
	Snímka 14: Superimposed Variants: Approach Steps
	Snímka 15: Meta-Expression in Superimposed Variants
	Snímka 16
	Snímka 17
	Snímka 18: Wrappers in pure::variants
	Snímka 19: Configuration expression in pure::variants
	Snímka 20
	Snímka 21
	Snímka 22: Framed Technology - OOP
	Snímka 23
	Snímka 24
	Snímka 25: Comparing Frames and AOP
	Snímka 26: Framed Aspects
	Snímka 27
	Snímka 28: Framed Aspects
	Snímka 29: Framed Aspects Composition
	Snímka 30: Process
	Snímka 31: Parame-terized Variants
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35: Delineating Frame Boundaries
	Snímka 36: Delineating Frame Boundaries
	Snímka 37
	Snímka 38
	Snímka 39: Writable Frame
	Snímka 40
	Snímka 41
	Snímka 42: Composition Rules
	Snímka 43
	Snímka 44: Modeling Variability - Types
	Snímka 45: Modeling Variability Using Parameterization
	Snímka 46: Modeling variability using information hiding
	Snímka 47: Modeling Variability Using Inheritance
	Snímka 48: Modeling Variability Using Variation Points
	Snímka 49: Lightweight method for software product line feature management
	Snímka 50: Configuration expressions
	Snímka 51: AND or OR JSON TREE
	Snímka 52: Hierarchic nature of configuration expressions
	Snímka 53: Applied annotations types
	Snímka 54: Variables features can interfere
	Snímka 55: Object oriented redesign of Battleship game
	Snímka 56: Pattern Cuckoo’s egg
	Snímka 57: Config to feature model mapping
	Snímka 58: Configuration using JSON File
	Snímka 59: Design With Aspects as Voluntary Functionality
	Snímka 60: Applied annotations types
	Snímka 61: Difficulty configuration
	Snímka 62
	Snímka 63: Statistics configuration
	Snímka 64: Variable encapsulation problem
	Snímka 65: Derivator – Class Diagram
	Snímka 66: Evaluation of in-code variability
	Snímka 67: Motivation: Studying the complexity of in-code variability
	Snímka 68
	Snímka 69
	Snímka 70: Cases to evaluate in-code complexity
	Snímka 71
	Snímka 72: Evaluation process
	Snímka 73
	Snímka 74: Configuration expressions
	Snímka 75: Hierarchic nature of configuration expressions
	Snímka 76
	Snímka 77
	Snímka 78
	Snímka 79: Analogies
	Snímka 80
	Snímka 81
	Snímka 82
	Snímka 83
	Snímka 84
	Snímka 85
	Snímka 86
	Snímka 87
	Snímka 88
	Snímka 89
	Snímka 90: The code complexity change after removal of files with most of (unconvertable decorators into) wrappers
	Snímka 91
	Snímka 92: The variability management significantly influences the code complexity
	Snímka 93
	Snímka 94
	Snímka 95
	Snímka 96
	Snímka 97
	Snímka 98: Future work
	Snímka 99: Optimalization of configuration expressions in large
	Snímka 100
	Snímka 101: Bibliography
	Snímka 102
	Snímka 103
	Snímka 104
	Snímka 105
	Snímka 106
	Snímka 107
	Snímka 108

